الجمهورية الجزائرية الدعقراطية الشعية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي الشعبة :علوم تجريبية

دورة : 2016

اختبار في مادة : العلوم الفيزيائية

المدة : 03 ساعات و 30د على المترشيح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (3.5 نقطة) المحاليل مأخوذة عند الدرجة 25°C. لإزالة الطبقة الكلسية المترسبة على جدران أدوات الطهى المنزلية يمكن

استعمال منظف تجاري لمسحوق حمض السولفاميك القوى ذي الصيغة الكيميائية ,HSO,NH والذي نرمز له اختصارا ونقاوته (% م).

التركيز التركيز (S_A) المحلول المحلول المحلول التركيز المولى C_A ، نحضر محلولا حجمه $V = 100 \, mL$ و يحتوى الكتلة من المسحوق التجاري لحمض السولفاميك. m = 0,9 g

أ- أكتب معادلة انحلال الحمض HA في الماء.

ب- صف البروتوكول التجريبي المناسب لعملية تحضير المحلول (S)

له ونضيف له $V_A=20\,mL$ معايرة المحلول (S_A) بأخذ منه حجما -2

هيدروكسيد الماء المقطر، و باستعمال التركيب التجريبي المبين بالشكل -1 نعايره بواسطة محلول هيدروكسيد الصوديوم (Na $^+$ (aq) + OH $^-$ (aq)) التركيز المولي التركيز المولي نبخ نقطة التكافؤ عند إضافة $C_B=0,1 mol.~L^{-1}$. $pH_E=7$ من محلول هيدروكسيد الصوبيوم ويكون $V_{BE}=15,3~mL$

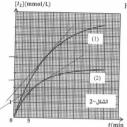
أ- تعرف على أسماء العناصر المرقمة في الشكل-1.

ب- اكتب معادلة تفاعل المعايرة.

. ج – احسب التركيز المولي C_A للمحلول (S_A)، ثم استنتج الكتلة m_A للحمض HA المُذَابة في هذا المحلول.

د- احسب النقاوة (p %) للمنظف التجاري.

 $M = 97 \text{ g. } \text{mol}^{-1}$ HA when $M = 97 \text{ g. } \text{mol}^{-1}$



التمرين الثاني: (4.5 نقطة)

لأجل إجراء دراسة حركية للتحول الكيميائي التام والبطيء بين محلول يود البوتاسيوم ($K^+(aq) + \Gamma(aq) + (K^+(aq) + (Aq))$ والماء الأكسجيني ${
m H}_2{
m O}_2(aq)$ لهما نفس التركيز المولى ${
m C}=0.1~{
m mol}$ ، نحضر في اللحظة ${
m t}=0$ وعند نفس درجة الحرارة المزيجين التاليين:

الموارة المزوجين التابيين:
المزيج الأول :
$$4 \text{ mL} \, 4 \text{ mL} \, 0$$
 و $36 \text{ mL} \, 0$ من $(K^{\dagger}(aq) + \Gamma(aq)) \, 0$ من $(K^{\dagger}(aq) + \Gamma(aq)) \, 0$ و $20 \text{ mL} \, 0$ و $10 \text{ mL} \, 0$ من $10 \text{ mL} \, 0$ المزيج الثاني : $10 \text{ mL} \, 0$ من 10

نضيف لكل مزيج كمية من الماء المقطر وقطرات من حمض الكبريت المركز، فيصبح حجم المزيج التفاعلي لكل منهما $V=60~\mathrm{mL}$. يُتُمَدِّجُ التحول الحادث في كل مزيج بالمعادلة الكيميائية التالية:

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = I_2(aq) + 2H_2O(l)$$

1- اكتب المعادلتين النصفيتين للأكسدة والارجاع، ثم استنتج الثنائيتين (ox/red) المشاركتين في التفاعل. 2 – أ– احسب كمية المادة الابتدائية للمتفاعلات في كل مزيج.

ب- انشئ جدول التقدم للتفاعل الحادث في المزيج الأول. 3 - البيانان (1) و (2) في الشكل-2 يمثلان على الترتيب تطور تركيز ثنائي اليود المتشكل في كل مزيج بدلالة الزمن. أ - احسب تركيز ثنائي اليود المتشكل في الحالة النهائية

في المزيج الأول. ب - استنتج من البيان (1) تركيز ثنائي اليود المتشكل في

. t = 30 min اللحظة . عال يتوقف التفاعل في المزيج (1) عند $t = 30 \, \mathrm{min}$ عال $t = 30 \, \mathrm{min}$

. $[I_2]$. وجد عبارة السرعة المجمية لتشكل ثنائي اليود بدلالة التركيز $[I_2]$

1160

 $t=10 \, \mathrm{min}$ عند اللحظة المربعة التفاعل في كلا المربعين عند اللحظة

التمرين الثالث: (04 نقاط)

1745.6

M(H)=1 g, mol^{-1} ; M(C)=12 g, mol^{-1} ; N=6.023

() -8	11 (C)=12 g. mot	$V_A = 0,023$	پات: : ×10 mol	لمعط
الثواة	⁹⁴ Sr	¹⁴⁰ Xe	²³⁵ U	7
Ei (MeV طاقة الربط	807,46	1160	1745.6	1

تسببت حادثة تشرنوبيل منة 1986 في تلويث الأرض والغلاف الجوي بسبب زيادة تركيز العناصر المشعّة مثل . 30 ans مر 137Cs و 134Cs مو 2 ans مر 134Cs هو 2 ans مر 137Cs هو 30 ans هو 30 ans هو 30 ans

1- حدد النظير المشع للسيزيوم الناجم عن هذه الحادثة الذي يمكن أن يتواجد إلى يومنا هذا (سنة 2016) ؟ علل.

 $. \beta^{-}$ يعطى تفكك السيزيوم $C_{S_{22}}$ الإشعاع -2

- ي ي معادلة التحول النووى الحادث مبينا النواة الناتجة من ببن الأنوية التالية:

ب- هل تتعلق قيمة نصف العمر للنظير المشع 35^{CS} بالمتغيرات الآتية: - الكمية الابتدائية للنظير المشغ - درجة الحرارة والضغط.

235 - -

3- ينشطر اليورانيوم U^{235} و فق المعادلة النووية التالية:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{94}_{Z}Sr + {}^{140}_{54}Xe + X {}^{1}_{0}n$$

أ– حدّد قيمة كل من العددين X و Z .

ب- ما هي النواة الأكثر استقرارا من بين النواتين الناتجتين عن هذا الانشطار النووي ؟ علل.

m=1 من اليورانيوم m=1 من اليورانيوم m=1 من اليورانيوم m=1

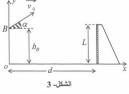
m=1 mg الموتان CaH_{10} الواجب حرقها لانتاج نفس الطاقة المحررة من انشطار الكثلة CaH_{10} من اليورانيوم CaH_{10} من اليورانيوم CaH_{10} من اليورانيوم CaH_{10} عندان استنتج؟

التمرين الرابع: (04 نقاط)

 $v_0 = 10 \; m.s^{-1} \; \; , \quad g = 10 \; m.s^{-2} \; \; :$ المعطیات:

براحدى الحصص التنزيبية لكرة القندم استقبل اللاعب كرة من زميله فقذفها برأسه نحو المرمى بعنهة تسجيل هدف. عادرت الكرة رأسه في اللحظة a=1 من النقطة a=1 في اتجاه المرمى بسرعة ابتدائية \overline{w} واقعة على المستوي الشاقولي المتعامد مع مستوي المرمى ويصنع حاملها زارية $\alpha=30$ مع الأفق. تقع النقطة a=1 على الارتفاع a=1 من سطح الأرض، كما هو موضح بالشكل—3.

1- بإهمال أبعاد الكرة وتأثير الهواء عليها، ويتطبيق


القانون الثاني لنيوتن على الكرة في المعلم المطحي الأرضي (Ox, Oy) أوجد ما يلي:

y(t) و x(t) و x(t) و y(t) و y(t) و y(t) و y(t) و y(t)

ب معدد معدد () ر – ر.
 ج – قيمة سرعة مركز عطالة الكرة عند الذروة.

2- يبعد خط التهديف عن اللاعب بالمسافة

ربعد خط التهديف عن الدعب بالمناقة $L=2,44 \; m$ وارتفاع المرمى هو $d=10 \; m$

أ- اكتب الشرط الذي يجب أن يحققه كل من x و χ لكي يسجل الهدف مباشرة إثر هذه الرأسية؟ y - هل سجل اللاعب الهدف بهذه الرأسية؟ y برّر إجابتك.

التمرين التجريبي: (04 نقاط)

نركب الدارة الكهربائية الموضحة بالشكل-4، والمؤلفة من:

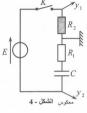
- مولد كهربائي للتوتر الثابت E
- . C مكثقة غير مشحونة سعتها -
- ناقلین أومیین مقاومتیهما $R_1 = 1k\Omega$ و جا غیر معلومة.
 - قاطعة كهربائية K

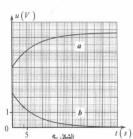
نوصل الدارة الكهربائية براسم اهتزاز مهبطي ذي ذاكرة كما هو موضح على الشكل- L = 0 ، فنشاهد على الشاشة

المنحنيين البيانيين (a) و (b) و الشكل (5-1)

1- ارفق كل منحنى بالمدخل الموافق له مع التبرير.

 $i\left(t\right)$ اكتب المعادلة التفاضلية التي تحققها الشدة -2


للتيار الكهربائي في الدارة.


 I_0 اوجد عبارة الشدة التيار الأعظمي المار في الدارة.

4- استنتج عند اللحظة t=0 عبارة التوثر بين طرفي الناقل الأومى R بدلالة R_1 و R_2 .

5- اعتمادا على البيانين، استنتج قيمة كل من

.C , R , · I , · E

HINAU HEIRIGH

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (04 نقاط)

نحضر ماء جافيل من تفاعل غاز نثائي الكلور (Cl₂(g) مع محلول هيدروكسيد الصوديوم ((Na⁺(aq)+ OH⁻(aq)) بتحول كيميائي تام يُلفَذُجُ بمحادلة التفاعل التالية:

 $Cl_2(g) + 2 OH^-(ag) = ClO^-(ag) + Cl^-(ag) + H_2O(l)$

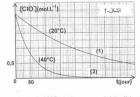
1 - تُعْرَف الدرجة الطَيرومترية ((Chl) بانها تواق عد لنزات غاز ثنائي الكلور في الشرطين النظاميين اللازم استعطالها لتحضير لنر واحد من ماء جافيل. بين أن: Chl = Co.Vw

حيث V_M= 22.4 L.mol⁻¹ هو الحجم المولى للغاز و C₀ هو التركيز المولى لماء جافيل.

CIO مبلغة (العبنة (A) من ماء جافيل المحفوظ عند درجة الحرارة Σ^{0} 20 تركيزه المولي بتبوارد الهيبركلرويت (CIO بود من المولي Σ^{0} 20 ونضيف إليها كمية كافية من يود ولا Σ^{0} 20 ونضيف إليها كمية كافية من يود البوتاسيوم ((Fi (aq) + T(aq)) في وسط حمضي، فيتشكل ثنائي البود ((aq) [2] وفق تفاعل ثام يُنمذُخ بالمعادلة التالية: $(K^{0}(aq) + T(aq) + 2T(aq) + 2T(aq)$

نعاير ثثاني اليود المتشكل في نهاية التفاعل بمحلول ثيوكبريئات الصوديوم (($(Q_0)^2 - Q_0)^2 - Q_0$) ركيزو بالشوارد $(Q_0)^2 - Q_0$ هو $(Q_0)^2 - Q_0$ برجود كاشف مارن (صمغ النشا أوالتيودان) فيكون حجم ثيوكبريئات الصوديوم المضاف عند التكافل $(Q_0)^2 - Q_0$.

 $(S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq))$ و $(I_2(aq))^{-1}(aq)$ و تفطى المعايرة : (المداخلتين في تفاعل المداخلتين في تفاعل المداخلتين في المداخلتين


أ - اكتب المعادلتين النصفيتين للأكسدة والإرجاع ثم
 معادلة التفاعل أكسدة -إرجاع المثمذخ لتحول المعايرة.

 $C_1 = \frac{C_2.V_E}{2V_1}$: بين أن

ج – احسب C_1 ثم استنتج C_0 و Chl . C_1 بعادلته C_1 معادلته معادلته C_1

 $2CIO^{-}(aq) = 2CI^{-}(aq) + O_{2}(g)$: الكيميائية يمثل الشكل -1 المتحنيين البيانيين لتغيرات تركيز شوارد

يمن الشكل 1 المتحليين البيانيين للغيرات تركير . -CIO بدلالة الزمن الناتجين عن المتابعة الزمنية

لتعلور عينتين من ماء جافيل حضرتا بنفس الدرجة الكلورومترية للعينة (A) عند درجتي الحرارة °20 بالنسبة للعينة (1) و °40 بالنسبة للعينة (2). العينتان حديثتا الصنع عند اللحظة 1–5.

أ - استنتج بيانيا التركيز الإبتدائي للعينتين (1) و (2) بالشوارد -CIO.

هل العينة (A) السابقة حديثة الصنع ؟

ب - اكتب عبارة السرعة الحجمية لإختفاء الشوارد "CIO" ، ثم أحسب قيمتها في اللحظة t=50 jours بالنسبة لكل عينة. قارن بين القيمتين، ماذا تستتنج ؟

ج - ما هي النتيجة التي نستخلصها من هذه الدراسة للحفاظ على ماء جافيل لمدة أطول ؟

C ; 5B; 4Be ; 3Li : تامعطيات

 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$, 1 an = 365.25 joursنواة البيريليوم 10 Be هي نواة مشعة تصدر الاشعاع -β،

وينتج عن تفككها نواة AX .

1- أ- اكتب معادلة التفكك النووي محددا قيمتي A و Z. ب - كيف نفسر انبعاث جسيمات -β.

2- مكنت المتابعة الزمنية لتطور الكتلة m لعينة من

البيريليوم كتلتها الابتدائية mo من رسم المنحنى البياني الموضح بالشكل-2.

أ- اكتب عبارة قانون التناقص الإشعاعي بدلالة λ (عدد الأنوية الابتدائية) وثابت التفكك λ

ب المتنقج عبارة الكتلة m(t) للعينة المتبقية من البيريليوم عند اللحظة t بدلالة m_0 (الكتلة الابتدائية للعينة) وثابت التفكك ٨.

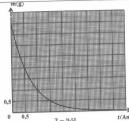
. λ عرف زمن نصف العمر $t_{1/2}$ ثم اوجد عبارته بدلالة ثابت التفكك -1

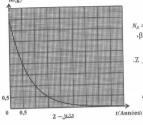
- - عين بيانيا زمن نصف عمر البيريليوم واستنتج قيمة ثابت التفكك λ بالوحدة - s⁻¹

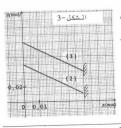
t=1 année عند الأنوية المتفككة عند t=1

. $A = 1,06 \times 10^{15} \text{ Bq}$ فرجدنا واسطة عداد جيجر النشاطية A لعينة من البيرليوم 10 فرجدنا A

أ- احسب الكتلة m للبيريليوم 10 المتسببة في هذه النشاطية.


 $.m_0 = 4g$ ممر هذه العينة إذا علمت أن كتلة البيريليوم الابتدائية هي -


التمرين الثالث: (04 نقاط)


 n_1 مول مول t=0 مول مول من n_1 مول مول حضر جملة كيميائية في اللحظة من حمض الإيثانويك CH3COOH و n2 مول من كحول صيغته العامة C3H7OH و قطرات من حمض الكبريت المركز. سمحت الدراسة التجريبية لتطور التفاعل الحادث برسم المنحنيين (1) و (2) الممثلين بالشكل-3.

يمثل المنحنى(1) تغيرات كمية مادة الكحول بدلالة التقدم x يمثل المنحنى(2) تغيرات كمية مادة الحمض بدلالة التقدم x . أ - اكتب معادلة التفاعل المُنمذِج للتحول الحادث.

ب - انشئ جدول التقدم لهذا التفاعل. ج - احسب قيمة نسبة التقدم النهائي τ_r للتفاعل.

د - احسب ثابت التوازن K للتفاعل ثم حدد صنف الكحول المستخدم.

ه - كيف يمكن تحسين مردود تشكل الأستر في هذا التفاعل ؟

2 - بعد بلوغ حالة النوازن وبترويد العزيج مكنت المتابعة الـ Pff مترية أمعابرة كمية المادة n للحمض المتبقى في العزيج بواسطة محلول هيدروكمبيد الصوديوم (Na[†](aq)+OH^{*}(aq)) تركيزه العولي C = 0,5mol/L من استخراج المعلمة الاتمة:

. 4.8 عند إضافة الحجم V = 10 mL من محلول هيدروكسيد الصوديوم تكون قيمة PH المزيج هي

 $K_e = 10^{-14}$ الجداء الشاردي للماء - 25°C الجداء الشاردي للماء الحرارة $K_e = 10^{-14}$

- ثابت الحموضة للثنائية (CH3COOH/CH3COO) هو PKa = 4,8

- أ اكتب معادلة التفاعل المُنفذِجُ للتحول الحادث.
 - ب- احسب قيمة n.
- ج اوجد عبارة ثابت التوازن K بدلالة K_a و K_a . د – احسب قيمة K ، ماذا تستنتج ?
 - A ، مادا نستنج !

التمرين الرابع: (04 نقاط)

لغرض دراسة تطور التوتر الكهربائي بين طرفي مكثفة نركب الدارة الكهربائية الموضحة بالشكل-4.

تتكون هذه الدارة من مولد للتوتر الثابت E ، ناقل أومي مقاومته R=10 kΩ ، مكثقة سعتها C و بادلة K.

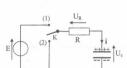
نضع البادلة في الوضع(1) إلى غاية بلوغ النظام الدائم، ثم

نغير البادلة إلى الوضع(2) في اللحظة t = 0.

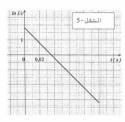
ا حما هي إشارة شدة التيار الكهربائي المبين في الدارة ؟ علل.

عن أن المعادلة التفاضلية التي يحققها التوتر الكهربائي
 بين طرفي المكثقة في هذه الدارة تُعطى بالشكل:

$$U_c + \frac{1}{\alpha} \frac{dU_c}{dt} = 0$$


3- إذا كان حل هذه المعادلة التفاضلية من الشكل:

ا اوجد عبارتي الثابتين A و $U_c=A\mathrm{e}^{-\mathrm{at}}$


E o C · R

4 – يمثل الشكل – 5 المنحنى البياني لتغيرات lnU_c بدلالة الزمن t.

. $lnU_c = \mathrm{f}(\mathrm{t})$ استنتج بیانیاعبارة الدالهٔ

الشكل-4

المستعج بولو سوال (١٠٠٥ ع ١٥٠٥ ع) . ب- بالمطابقة مع العلاقة النظرية الموافقة للمنحني إستتنج قيم كل من: C ، α و E .

BAC2016/CH15R29*

5. احسب الطاقة المحولة إلى الناقل الأومي عند اللحظة $\, au = 2.5 \, au \,$ ماذا تستنتج ؟

حيث 7 هو ثابت الزمن المميز للدارة.

التمرين التجريبي : (04 نقاط)

 $g = 10 \text{ m/s}^2$ نعتبر

يتحرك جسم (S) نعتبره نقطيا كتلته m = 900g على مسار مستقيم AB مائل

عن الأفق بزاوية °35 $\alpha=35$ كما هو موضح بالشكل-6.

ينطلق الجسم من النقطة A دون سرعة ابتدائية.

باستعمال تجهيز مناسب ننجز التسجيل المتعاقب لمواضع الجسم أثناء حركته على المسار AB فنحصل على النتائج

المدونة في الجدول الآتي:

AB ماثل AB ماثل AB ماثل ماثل ماثل الم

المعدل 0												
الموضع	G ₀	G ₁	G ₂	G ₃	G ₄	G ₅	G ₆	G ₇	G ₈			
t (s) اللحظة	0.00	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64			
(cm) الفاصلة	0.0	1,5	6,0	13,5	24,0	37,5	54,0	73,5	96,0			

ينطبق الموضع G_0 على النقطة A و ينطبق الموضع G_8 على النقطة B ، والمدة التي تقصل بين تسجيلين متتاليين au = 80ms

. G_6 ، G_5 ، G_4 ، G_3 ، G_2 عند المواضع عند المراضع المرعة اللحظية للجسم عند المواضع

 G_5 ، G_4 ، G_3 عند المواضع عند قيمة تسارعه عند المواضع G_5 ، G_4 ، G_5 ، G_6 ، G_7 ، G_7 ، G_8 ، G_8

ج استنج طبيعه خركته.

2 - باهمال قوى الاحتكاك المؤثرة على الجسم (S):

أ - مثل القوى المطبقة على الجسم (S).

ب- بتطبيق القانون الثاني لنبوتن في المعلم السطحي الأرضى الذي نعتبره غاليليا، أوجد عبارة التسارع (a)
 لمركز عطالة الجمم ثم أحسب قيمته.

ج - قارن بين هذه القيمة النظرية للتسارع وقيمته التجريبية الموجودة سابقا، ماذا تستنتج ؟

3 - باعتبار قوى الاحتكاك تكافئ قوة وحيدة أُم ثابتة في الشدة ومعاكسة لجهة الحركة.

. \vec{f} احسب شدة القوة \vec{f}

ب - باستخدام مبدأ إنحفاظ الطاقة أوجد قيمة سرعة الجسم عند النقطة B .

انتهى الموضوع الثاني